4.4 Article

Chaos and population disappearances in simple ecological models

期刊

JOURNAL OF MATHEMATICAL BIOLOGY
卷 42, 期 3, 页码 239-260

出版社

SPRINGER-VERLAG
DOI: 10.1007/s002850000070

关键词

population dynamics; extinction; population disappearance; unimodal maps; chaos; bifurcations

向作者/读者索取更多资源

A class of truncated unimodal discrete-time single species models for which low or high densities result in extinction in the following generation are considered. A classification of the dynamics of these maps into five types is proven: (i) extinction in finite time for all initial densities, (ii) semistability in which all orbits tend toward the origin or a semistable fixed point, (iii) bistability for which the origin and an interval bounded away from the origin are attracting, (iv) chaotic semistability in which there is an interval of chaotic dynamics whose compliment lies in the origin's basin of attraction and (v) essential extinction in which almost every (but not every) initial population density leads to extinction in finite time. Applying these results to the Logistic, Ricker and generalized Beverton-Holt maps with constant harvesting rates, two birfurcations are shown to lead to sudden population disappearances: a saddle node bifurcation corresponding to a transition from bistability to extinction and a chaotic blue sky catastrophe corresponding to a transition from bistability to essential extinction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据