4.5 Article

Mechanisms affecting the dissolution of nonaqueous phase liquids into the aqueous phase in slow stirring batch systems

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 20, 期 3, 页码 459-466

出版社

WILEY
DOI: 10.1002/etc.5620200301

关键词

slow-stirring method; equilibrium dissolution; diffusion; mass transfer limitation; nonaqueous phase liquids

向作者/读者索取更多资源

Understanding the kinetics of the exchange processes between nonaqueous phase liquids (NAPLs) and water is important in predicting the fate of anthropogenic compounds such as petroleum hydrocarbons, i.e., benzene, toluene, ethylbenzene, and xylene (BTEX) as well as polynuclear aromatic hydrocarbons (PAHs). Exchange processes occurring in the environment resemble the experimental setup of the slow-stirring method (SSM) designed to determine solubilities and octanol-water partition coefficients. Data obtained from SSM experiments for diesel fuel compounds are interpreted by a linear transfer model that is characterized by an aqueous molecular boundary layer and the water/NAPL equilibrium partition coefficient. For the chosen experimental setup, the boundary layer thickness is 2.42 x 10(-2) cm. Typical equilibration times lie between 1 and 2 d. Due to the temperature dependence of the aqueous diffusivity, this time increases with decreasing temperature. Transport within the NAPL phase can slow down the exchange process for the more water-soluble compounds (e.g., benzene) provided that the stirring rate exceeds a critical value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据