4.5 Article

Evolution and diversification of Group 1 [NiFe] hydrogenases. Is there a phylogenetic marker for O2-tolerance?

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1817, 期 9, 页码 1565-1575

出版社

ELSEVIER
DOI: 10.1016/j.bbabio.2012.04.012

关键词

[NiFe] hydrogenases; Phylogenetic tree; O-2-tolerance; Bioenergetics; Iron-sulfur cluster

资金

  1. Max-Planck Society
  2. Solar-H2 program

向作者/读者索取更多资源

Group 1 hydrogenases are periplasmic enzymes and are thus strongly affected by the outside world the cell experiences. This exposure has brought about an extensive heterogeneity in their cofactors and redox partners. Whereas in their majority they are very O-2-sensitive, several enzymes of this group have been recently reported to be O-2-tolerant. Structural and biochemical studies have shown that this O-2-tolerance is conferred by the presence of an unusual iron-sulfur cofactor with supernumerary cysteine ligation (6 instead of 4 Cys, hence called '6C cluster'). This atypical cluster coordination affords redox plasticity (i.e. two-redox transitions), unprecedented for this type of cofactors and likely involved in resistance to O-2. Genomic screening and phylogenetic tree reconstruction revealed that 6C hydrogenases form a monophyletic clade and are unexpectedly widespread among bacteria. However, several other well-defined clades are observed, which indicate early diversification of the enzyme into different subfamilies. The various idiosyncrasies thereof are shown to comply with a very simple rule: phylogenetic grouping of hydrogenases directly correlates with their specific functions and hence biochemical characteristics. The observed variability results from gene duplication, gene shuffling and subsequent adaptation of the diversified enzymes to specific environments. An important factor for this diversification seems to have been the emergence of molecular oxygen. Hydrogenases appear to have dealt with oxidative stress in various ways, the most successful of which, however, was the innovation of the 6C-cluster conferring pronounced O-2-tolerance to the parent enzymes. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据