4.5 Article

Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro

期刊

BIOLOGY OF REPRODUCTION
卷 64, 期 3, 页码 879-889

出版社

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod64.3.879

关键词

fertilization; in vitro fertilization; meiosis; oocyte development; ovum

向作者/读者索取更多资源

The role of microfilaments, microtubules, and mitogen-activated protein (MAP) kinase in regulation of several important dynamic events of porcine oocyte maturation and fertilization is described. Fluorescently labeled microfilaments, microtubules, and cortical granules were visualized using either epifluorescence microscopy or laser scanning confocal microscopy. Mitogen-activated protein kinase phosphorylation was revealed by Western immunoblotting. We showed that 1) microfilament disruption did not affect meiosis resumption and metaphase I meiotic apparatus formation but inhibited further cell cycle progression (chromosome separation) even though MAP kinase was phosphorylated; 2) cortical granule (CG) migration was driven by microfilaments (but not microtubules), and once the chromosomes and CGs were localized beneath the oolemma their anchorage to the cortex was independent of either microfilaments or microtubules; 3) neither microfilaments nor microtubules were involved in CG exocytosis during oocyte activation; 4) sperm incorporation was mediated by microfilaments, while pronuclear (PN) syngamy was controlled by microtubules rather than microfilaments; 5) spindle microtubule organization was temporally correlated with MAP kinase phosphorylation, while the extensive microtubule organization in the sperm aster that is required for PN apposition and syngamy occurred in the absence of MAP kinase activation; and 6) MAP kinase phosphorylation did not change either when microtubules were disrupted by nocodazole or when cytoplasmic microtubule asters were induced by taxol. The present study suggests that the role of the cytoskeleton during porcine oocyte maturation is similar to that of rodents, while the mechanisms of fertilization in pig resemble those of lower vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据