4.5 Article

Probing the quinone binding site of Photosystem II from Thermosynechococcus elongatus containing either PsbA1 or PsbA3 as the D1 protein through the binding characteristics of herbicides

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1807, 期 1, 页码 119-129

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2010.10.004

关键词

Photosystem II; D1 protein; PsbA protein; Herbicide; EPR; Absorption change

资金

  1. JSPS
  2. CNRS
  3. Ministry of Education, Science, Sports, Culture and Technology [21612007]
  4. EU [212508]

向作者/读者索取更多资源

The main cofactors involved in Photosystem II (PSII) oxygen evolution activity are borne by two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is predominantly encoded by either the psbA(1) or the psbA(3) gene, the expression of which depends on the environmental conditions. In this work, the Q(B) site properties in PsbA1-PSII and PsbA3-PSII were probed through the binding properties of DCMU, a urea-type herbicide, and bromoxynil, a phenolic-type herbicide. This was done by using helium temperature EPR spectroscopy and by monitoring the time-resolved changes of the redox state of Q(A) by absorption spectroscopy in PSII purified from a His(6)-tagged WT strain expressing PsbA1 or from a His(6)-tagged strain in which both the psbA(1) and psbA(2) genes have been deleted and which therefore only express PsbA3. It is shown that, in both PsbA1-PSII and PsbA3-PSII, bromoxynil does not bind to PSII when Q(B) is in its semiquinone state which indicates a much lower affinity for PSII when Q(A) is in its semiquinone state than when it is in its oxidized state. This is consistent with the midpoint potential of Q(A)(center dot-)/Q(A) being more negative in the presence of bromoxynil than in its absence [Krieger-Liszkay and Rutherford, Biochemistry 37 (1998) 17339-17344]. The addition in the dark of DCMU, but not that of bromoxynil, to PSII with a secondary electron acceptor in the Q(B)(center dot-) state induces the oxidation of the non-heme iron in a fraction of PsbA3-PSII but not in PsbA1-PSII. These results are explained as follows: i) bromoxynil has a lower affinity for PSII with the non-heme iron oxidized than DCMU therefore, ii) the midpoint potential of the Fe(II)/Fe(III) couple is lower with DCMU bound than with bromoxynil bound in PsbA3-PSII; and iii) the midpoint potential of the Fe(II)/Fe(III) couple is higher in PsbA1-PSII than in PsbA3-PSII. The observation of DCMU-induced oxidation of the non-heme iron leads us to propose that Q(2), an electron acceptor identified by Joliot and Joliot [FEBS Lett 134 (1981) 155-158], is the non-heme iron. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据