4.2 Article Proceedings Paper

Auroral zone dayside precipitation during magnetic storm initial phases

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1364-6826(00)00161-9

关键词

aurora; magnetic storms; magnetosphere

向作者/读者索取更多资源

Significant charged-particle precipitation occurs in the dayside auroral zone during and after interplanetary shock impingements on the Earth's magnetosphere. The precipitation intensities and spatial and temporal evolution are discussed. Although the post-shock energy flux (1020 erg cm(-2) s(-1)) is lower than that of substorms, the total energy deposition rate may be considerably greater (similar to an order of magnitude) than nightside energy rates due to the greater area of the dayside portion of the auroral oval (defined as extending from 03 MLT through noon to 21 MLT). This dayside precipitation represents direct solar wind energy input into the magnetosphere, ionosphere system. The exact mechanisms for particle energization and precipitation into the ionosphere are not known at this time. Different mechanisms are probably occurring during different portions of the storm initial phase. immediately after shock compression of the magnetosphere. possible precipitation-related mechanisms are: (1) betatron compression of preexisting outer zone magnetospheric particles. The anisotropic plasma is unstable to loss-cone instabilities, leading to plasma wave growth, resonant particle pitch-angle scattering and electron and proton losses into the upper ionosphere. (2) The compression of the magnetosphere can also lead to enhanced field-aligned currents and the formation of dayside double-layers. Finally (3) in the latter stages of the storm initial phase. there is evidence for a long-lasting viscous-like interaction occurring on the Ranks of the magnetopause. Ground-based observations identifying the types of dayside auroral forms would be extremely useful in identifying the specific solar wind energy transfer mechanisms. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据