4.5 Article Proceedings Paper

Hypoxia and mitochondrial oxidative metabolism

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1797, 期 6-7, 页码 1171-1177

出版社

ELSEVIER
DOI: 10.1016/j.bbabio.2010.02.011

关键词

Mitochondrion; Oxidative phosphorylation; Hypoxia; ROS; Autophagy; F1FO ATPase; IF1

向作者/读者索取更多资源

It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondria's central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O-2] sensors, convey signals to HIF-1directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F(O) ATPase in the hypoxia-induced mitochondrial autophagy. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据