4.5 Article

Determination of the excitation migration time in Photosystem II - Consequences for the membrane organization and charge separation parameters

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1777, 期 5, 页码 404-409

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2008.02.003

关键词

LHCII; CP29; CP26; CP24; excitation energy transfer; non-photochemical quenching

向作者/读者索取更多资源

The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial excited-state populations in the inner and outer antenna system. The non-exponential fluorescence decay appears to be 4.3 +/- 1.8 ps slower upon 484 nm excitation for preparations that contain on average 2.45 LHCII (light-harvesting complex II) trimers per reaction center. Using a recently introduced coarse-grained model it can be concluded that the average migration time of an electronic excitation towards the RC contributes similar to 23% to the overall average trapping time. The migration time appears to be approximately two times faster than expected based on previous ultrafast transient absorption and fluorescence measurements. It is concluded that excitation energy transfer in PSII follows specific energy transfer pathways that require an optimized organization of the antenna complexes with respect to each other. Within the context of the coarse-grained model it can be calculated that the rate of primary charge separation of the RC is (5.5 +/- 0.4 ps)(-1), the rate of secondary charge separation is (137 +/- 5 ps)(-1) and the drop in free energy upon primary charge separation is 826 +/- 30 cm(-1). These parameters are in rather good agreement with recently published results on isolated core complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据