4.5 Article

Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1777, 期 3, 页码 295-307

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2007.12.003

关键词

PCP; carotenoid; triplet state; pulse EPR; pulse ENDOR; DFT; hyperfine couplings

向作者/读者索取更多资源

The photoexcited triplet state of the carotenoid peridinin in the Peridinin-chlorophyll a-protein of the dinoflagellate Amphidinium carterae has been investigated by pulse EPR and pulse ENDOR spectroscopies at variable temperatures. This is the first time that the ENDOR spectra of a carotenoid triplet in a naturally occurring light-harvesting complex, populated by energy transfer from the chlorophyll a triplet state, have been reported. From the electron spin echo experiments we have obtained the information on the electron spin polarization dynamics and from Mims ENDOR experiments we have derived the triplet state hyperfine couplings of the alpha- and beta-protons of the peridinin conjugated chain. Assignments of beta-protons belonging to two different methyl groups, with a(iso) = 7.0 MHz and a(iso) = 10.6 MHz respectively, have been made by comparison with the values predicted from density functional theory. Calculations provide a complete picture of the triplet spin density on the peridinin molecule, showing that the triplet spins are delocalized over the whole pi-conjugated system with an alternate pattern, which is lost in the central region of the polyene chain. The ENDOR investigation strongly supports the hypothesis of localization of the triplet state on one peridinin in each subcluster of the PCP complex, as proposed in [Di Valentin et al. Biochim. Biophys. Acta 1777 (2008) 186-195]. High spin density has been found specifically at the carbon atom at position 12 (see Fig. 113), which for the peridinin involved in the photo-protective mechanism is in close contact with the water ligand to the chlorophyll a pigment. We suggest that this ligated water molecule, placed at the interface between the chlorophyll-peridinin pair, is functioning as a bridge in the triplet-triplet energy transfer between the two pigments. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据