4.6 Article

Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 9, 页码 6267-6273

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M008606200

关键词

-

向作者/读者索取更多资源

Lipoxygenases are key enzymes in the synthesis of oxylipins and play an important role in the response of plants to wounding and pathogen attack. In cultured potato cells treated with elicitor from Phytophthora infestans, the causal agent of late blight disease, transcripts encoding a Linoleate 9-lipoxygenase and a Linoleate 13-lipoxygenase accumulate. However, lipoxygenase activity assays and oxylipin profiling revealed only increased 9-lipoxygenase activity and formation of products derived therefrom, such as 9-hydroxy octadecadienoic acid and colneleic acid. Furthermore, the 9-lipoxygenase products 9(S),10(S),11(R)-trihydroxy-12(Z)-octadecenoic and 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid were identified as novel, elicitor-inducible oxylipins in potato, suggesting a role of these compounds in the defense response against pathogen attack. Neither 13-lipoxygenase activity nor 13-lipoxygenase products were detected in higher amounts in potato cells after elicitation. Thus, formation of products by the 9-lipoxygenase pathway, including the enzymes hydroperoxide reductase, divinyl ether synthase, and epoxy alcohol synthase, is preferentially stimulated in cultured potato cells in response to treatment with P. infestans elicitor. Moreover, elicitor-induced accumulation of desaturase transcripts and increased phospholipase A(2) activity after elicitor treatment suggest that substrates for the lipoxygenase pathway might be provided by de novo synthesis and subsequent release hom lipids of the endomembrane system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据