4.5 Article

Identification by time-resolved EPR of the peridinins directly involved in chlorophyll triplet quenching in the peridinin-chlorophyll a-protein from Amphidinium carterae

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1777, 期 2, 页码 186-195

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2007.09.002

关键词

PCP; carotenoid; triplet; TR-EPR

向作者/读者索取更多资源

The mechanism of triplet-triplet energy transfer in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae was investigated by time-resolved EPR (TR-EPR). The approach exploits the concept of spin conservation during triplet-triplet energy transfer, which leads to spin polarization conservation in the observed TR-EPR spectra. The acceptor (peridinin) inherits the polarization of the donor (chlorophyll) in a way which depends on the relative geometrical arrangement of the donor-acceptor couple. Starting from the initially populated chlorophyll triplet state and taking the relative positions among Chls and peridinins from the X-ray structure of PCP, we calculated the expected triplet state polarization of any peridinin in the complex. Comparison with the experimental data allowed us to propose a path for triplet quenching in the protein. The peri din in-chlorophyl I pair directly involved in the triplet-triplet energy transfer coincides with the one having the shortest center to center distance. A water molecule, which is coordinated to the central Mg atom of the Chl, is also placed in close contact with the peridinin. The results support the concept of localization of the triplet state mainly in one specific peridinin in each of the two pigment subclusters related by a pseudo C-2 symmetry. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据