4.4 Review

Thermodynamic basis for sequence-specific recognition of ssDNA by an autoantibody

期刊

BIOCHEMISTRY
卷 40, 期 9, 页码 2911-2922

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0023854

关键词

-

资金

  1. NIGMS NIH HHS [GM 42168] Funding Source: Medline

向作者/读者索取更多资源

11F8 is a sequence-specific DNA binding monoclonal autoantibody previously isolated from an autoimmune lupus-prone mouse [Stevens, S. Y., and Glick, G. D. (1999) Biochemistry 38, 560-568]. This antibody, like many other lupus anti-DNAs, localizes to kidney tissue and eventually leads to renal damage through a process that first involves the binding of DNA antigens. A series of experiments were conducted to investigate the thermodynamic and structural basis by which this antibody discriminates between specific, noncognate, and nonspecific sequences. Sequence-specific binding occurs with a minimal dependence on the polyelectrolyte effect along with a favorable binding enthalpy reflecting the presence of base stacking and contacts to DNA bases. This favorable binding enthalpy apparently is derived from desolvation at the binding interface and is consistent with recent models of the nonclassical hydrophobic effect. Noncognate recognition is also driven by the nonclassical hydrophobic effect, but is accompanied by highly unfavorable entropies that are responsible for reduced affinity relative to the high-affinity consensus sequence. Nonspecific recognition is driven completely by the polyelectrolyte effect involving extensive electrostatic interactions with the phosphate backbone. Collectively, the data demonstrate the ability of 11F8 to adapt its mode of binding to the available DNA surface and provide a thermodynamic model for sequence-specific recognition of single-stranded DNA. The salient features of this model employ the paradigms invoked to explain protein.dsDNA, protein.RNA, and antibody.antigen binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据