4.6 Article

Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures

期刊

PHYSICAL REVIEW B
卷 63, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.63.125417

关键词

-

向作者/读者索取更多资源

The purely bound electromagnetic modes of propagation supported by asymmetric waveguide structures, comprised of a thin lossy metal film of finite width on a dielectric substrate and covered by a different dielectric superstrate, have been characterized at optical wavelengths. The dispersion of the modes with film thickness and width has been assessed and the effects caused by varying the difference between the superstrate and substrate dielectric constants on the characteristics of the modes have been determined. The modes are quite different from those supported by corresponding slab structures or similar finite-width symmetric waveguides. Unlike these limiting cases, the dispersion with film thickness can exhibit an unusual oscillatory character which is explained by a switching or swapping of the constituent interface modes. In addition, the four fundamental modes supported can evolve such that none has a diminishing attenuation with diminishing film thickness. This rather complex evolution of modes is unique to asymmetric finite-width structures. Under certain conditions, a long-ranging mode having a field distribution that is suitable to excitation using an end-fire technique can be supported. The long-ranging mode has a cutoff thickness below which it is no longer propagated, and its attenuation near cutoff decreases very rapidly, much more so than the attenuation related to the lone-ranging mode in a comparable symmetric waveguide. Furthermore, its cutoff thickness is larger than that of the so mode in the corresponding asymmetric slab waveguide, which implies that decreasing the film width increases the sensitivity of the mode to the asymmetry in the structure. This result is interesting and potentially useful in that the propagation characteristics of the mode can be affected by a smaller change in the dielectric constant of the substrate or superstrate compared with the so mode guided by the corresponding slab structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据