4.6 Article

Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations -: art. no. 125119

期刊

PHYSICAL REVIEW B
卷 63, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.63.125119

关键词

-

向作者/读者索取更多资源

Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal, i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of stares (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function epsilon (2) consists of two primary features due to direct X- and Gamma -point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an nb initio Kohn-Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties. respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect Gamma -X bandgap of 1.3 +/- 0.3 eV and a direct X-point gap of 2.4 +/- 0.3 eV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据