4.7 Article

Mechanisms responsible for cross-resistance and dichotomous resistance among the quinolones

期刊

CLINICAL INFECTIOUS DISEASES
卷 32, 期 -, 页码 S1-S8

出版社

OXFORD UNIV PRESS INC
DOI: 10.1086/319369

关键词

-

向作者/读者索取更多资源

Resistance to the quinolones almost always arises from the accumulation of mutations in chromosomal genes responsible for the drug targets, permeability, or active efflux. This resistance can be depicted as a stepwise process in which each step, represented by separate mutations, diminishes susceptibility on average 4- to 8-fold. The precise path followed in this stepwise process differs with the quinolone that selects resistance as well as the organism involved. At each step, the influence of each mutation on susceptibility to other quinolones not used in the selection process varies greatly, and a pattern of either cross-resistance or dichotomous resistance may be seen. From an understanding of the stepwise process by which resistance to the quinolones evolves, it is possible to use an 8-fold rule to predict which compounds may provide effective therapy for a given infection and be least likely to select for resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据