4.6 Article

Significant interference with hepatitis B virus replication by a core-nuclease fusion protein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 12, 页码 8875-8883

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006335200

关键词

-

向作者/读者索取更多资源

Hepatitis B virus (HBV), a small DNA containing virus that replicates via reverse transcription, causes acute and chronic B-type hepatitis in humans. The limited success of current therapies for chronic infection has prompted exploration of alternative strategies. Capsid-targeted viral inactivation is a conceptually powerful approach that exploits virion structural proteins to target a degradative enzyme specifically into viral particles. Its principal feasibility has been demonstrated in retroviral model systems but not yet for a medically relevant virus outside the retrovirus family. Recently, we found that C proximal fusion to the HBV capsid protein of the Ca2+-dependent nuclease (SN) from Staphylococcus aureus yields a chimeric protein, coreSN, that in Escherichia coli coassembles with the wild-type capsid protein into particles with internal SN domains. Here we show that, in HBV co-transfected human hepatoma cells, less than 1 coreSN protein per 10 wild-type core protein subunits reduced titers of enveloped DNA containing virions by more than 95%. The antiviral effect depends on both an enzymatically active SN and on the core domain. CoreSN does not block assembly of RNA containing nucleocapsids but interferes with proper synthesis of viral DNA inside the capsid, or leads to rapid DNA degradation. Our data suggest an intracellular nuclease activation that, owing to the characteristics of HBV morphogenesis, is nonetheless highly virus specific. HBV may therefore be particularly vulnerable to the capsid-targeted viral inactivation approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据