4.4 Article

Entry of Cell-Penetrating Peptide Transportan 10 into a Single Vesicle by Translocating Across Lipid Membrane and Its Induced Pores

期刊

BIOCHEMISTRY
卷 53, 期 2, 页码 386-396

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi401406p

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS) [21310080]
  2. Ministry of Education, Culture, Sports, Science and Technology.(MEXT) of Japan [18048020, 20034023]
  3. Grants-in-Aid for Scientific Research [18048020, 20034023, 21310080] Funding Source: KAKEN

向作者/读者索取更多资源

The cell-penetrating peptide, transportan 10 (TP10), can translocate across the plasma membrane of living cells and thus can be used for the intracellular delivery of biological cargo such as proteins. However, the mechanisms underlying its translocation and the delivery of large cargo remain unclear. In this report we investigated the entry of TP10 into a single giant unilamellar vesicle (GUV) and the TP10-induced leakage of fluorescent probes using the single GUV method. GUVs of 20% dioleoylphosphatidylglycerol (DOPG)/80% dioleoylphosphatidylcholine (DOPC) were prepared, and they contained a water-soluble fluorescent dye, Alexa Fluor 647 hydrazicre (AF647), and smaller vesicles composed of 20% DOPG/80% DQPC. The interaction of carboxyfluorescein (CF)-labeled TP10 (CF-TP10) with these loaded GUVs was investigated using confocal microscopy. The fluorescence intensity of the GUV membrane increased with time to a saturated value, then the fluorescence intensity due to the membranes of the smaller vesicles inside the GUV increased prior to leakage of AF647. This result indicates that CF-TP10 entered the GUV from the outside by translocating across the lipid membrane before CF-TP10-induced pore formation. The rate constant of TP10-induced pore formation in lipid membranes increased with an increase in TP10 concentration. Large molecules such as Texas Red Dextran 40000, and Vesicles with a diameter of 1-2 mu m, permeated through the TP10-induced pores or local rupture in the lipid membrane. These results provide the first direct experimental evidence that TP10 can deliver large cargo through lipid membranes, without the need for special transport mechanisms such as those found in cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据