4.8 Article

Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states

期刊

PLANT PHYSIOLOGY
卷 125, 期 4, 页码 1802-1812

出版社

AMER SOC PLANT PHYSIOLOGISTS
DOI: 10.1104/pp.125.4.1802

关键词

-

资金

  1. NIGMS NIH HHS [GM45244] Funding Source: Medline

向作者/读者索取更多资源

Plant cells rely on plasmodesmata for intercellular transport of small signaling molecules as well as larger informational macromolecules such as proteins. A green fluorescent protein (GFP) reporter and low-pressure microprojectile bombardment were used to quantify the degree of symplastic continuity between cells of the leaf at different developmental stages and under different growth conditions. Plasmodesmata were observed to be closed to the transport of GFP or dilated to allow the traffic of GFP. In sink leaves, between 34% and 67% of the cells transport GFP (27 kD), and between 30% and 46% of the cells transport double GFP (54 kD). In leaves in transition transport was reduced; between 21% and 46% and between 2% and 9% of cells transport single and double GFP, respectively. Thus, leaf age dramatically affects the ability of cells to exchange proteins nonselectively. Further, the number of cells allowing GFP or double GFP movement was sensitive to growth conditions because greenhouse-grown plants exhibited higher diffusion rates than culture-grown plants. These studies reveal that leaf cell plasmodesmata are dynamic and do not have a set size exclusion limit. We also examined targeted movement of the movement protein of tobacco mosaic virus fused to GFP, P30::GFP. This 58-kD fusion protein localizes to plasmodesmata, consistently transits from up to 78% of transfected cells, and was not sensitive to developmental age or growth conditions. The relative number of cells containing dilated plasmodesmata varies between different species of tobacco, with Nicotiana clevelandii exhibiting greater diffusion of proteins than Nicotiana tabacum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据