4.7 Review

Interictal spikes in focal epileptogenesis

期刊

PROGRESS IN NEUROBIOLOGY
卷 63, 期 5, 页码 541-567

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0301-0082(00)00026-5

关键词

-

向作者/读者索取更多资源

Interictal electroencephalography (EEG) potentials in focal epilepsies are sustained by synchronous paroxysmal membrane depolarization generated by assemblies of hyperexcitable neurons. It is currently believed that interictal spiking sets a condition that preludes to the onset of an ictal discharge. Such an assumption is based on little experimental evidence. Human pre-surgical studies and recordings in chronic and acute models of focal epilepsy showed that: (i) interictal spikes (IS) and ictal discharges are generated by different populations of neuron through different cellular and network mechanisms; (ii) the cortical region that generates IS (irritative area) does not coincide with the ictal-onset area; (iii) IS frequency does not increase before a seizure and is enhanced just after an ictal event; (iv) spike suppression is found to herald ictal discharges; and (v) enhancement of interictal spiking suppresses ictal events. Several experimental evidences indicate that the highly synchronous cellular discharge associated with an IS is generated by a multitude of mechanisms involving synaptic and non-synaptic communication between neurons. The synchronized neuronal discharge associated with a single IS induces and is followed by a profound and prolonged refractory period sustained by inhibitory potentials and by activity-dependent changes in the ionic composition of the extracellular space. Post-spike depression may be responsible for pacing interictal spiking periodicity commonly observed in both animal models and human focal epilepsies. It is proposed that the strong after-inhibition produced by IS protects against the occurrence of ictal discharges by maintaining a low level of excitation in a general condition of hyperexcitability determined by the primary epileptogenic dysfunction. (C) 2001 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据