4.5 Article

Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation

期刊

JOURNAL OF NEUROCHEMISTRY
卷 77, 期 2, 页码 383-390

出版社

WILEY
DOI: 10.1046/j.1471-4159.2001.00188.x

关键词

creatine; glutamate; glutamate transport; oxidative damage; magnetic resonance spectroscopy

资金

  1. NIA NIH HHS [P01 AG12992] Funding Source: Medline

向作者/读者索取更多资源

Several lines of evidence implicate excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis (ALS). Transgenic mice with a superoxide dismutase mutation (G93A) have been utilized as an animal model of familial ALS (FALS). We examined the cortical concentrations of glutamate using in vivo microdialysis and in vivo nuclear magnetic resonance (NMR) spectroscopy, and the effect of long-term creatine supplementation. NMDA-stimulated and L-trans-pyrrolidine-2,4-dicarboxylate (LTPD)-induced increases in glutamate were significantly higher in G93A mice compared with littermate wild-type mice at 115 days of age. At this age, the tissue concentrations of glutamate were also significantly increased as measured with NMR spectroscopy. Creatine significantly increased longevity and motor performance of the G93A mice, and significantly attenuated the increases in glutamate measured with spectroscopy at 75 days of age, but had no effect at 115 days of age. These results are consistent with impaired glutamate transport in G93A transgenic mice. The beneficial effect of creatine may be partially mediated by improved function of the glutamate transporter, which has a high demand for energy and is susceptible to oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据