4.5 Article

Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene

期刊

MOLECULAR MICROBIOLOGY
卷 40, 期 2, 页码 485-497

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1365-2958.2001.02404.x

关键词

-

向作者/读者索取更多资源

Caulobacter crescentus chromosome replication is precisely coupled to a developmental cell cycle. Like most eubacteria, C. crescentus has a DnaA homologue that is presumed to initiate chromosome replication. However, the C. crescentus replication origin (Cori) lacks perfect consensus Escherichia coli DnaA boxes. Instead, the Cori strorig transcription promoter (Ps) may regulate chromosome replication through the CtrA cell cycle response regulator. We therefore created a conditional dnaA C. crescentus strain. Blocking dnaA expression immediately decreased DNA synthesis, which stopped after approximately one doubling period. Fluorescent flow cytometry confirmed that DNA synthesis is blocked at the initiation stage. Cell division also stopped, but not swarmer to stalked cell differentiation. All cells became stalked cells that grew as long filaments. Therefore, general transcription and protein synthesis continued, whereas DNA synthesis stopped. However, transcription was selectively blocked from the flagellar fliQ and fliL and methyltransferase ccrM promoters, which require CtrA and are blocked by different DNA synthesis inhibitors. Interestingly, transcription from Cori Ps continued unaltered. Therefore, Ps transcription is not sufficient for chromosome replication. Approximately 6-8 h after blocked dnaA expression, cells lost viability exponentially, Coincidentally, beta -galactosidase was induced from one transcription reporter, suggesting an altered physiology. We conclude that C. crescentus DnaA is essential for chromosome replication initiation, and perhaps also has a wider role in cell homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据