4.4 Article

Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue

期刊

BIOCHEMISTRY
卷 51, 期 33, 页码 6511-6518

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi3002538

关键词

-

资金

  1. National Institutes of Health [R01 DE018468]
  2. Materials Research Science and Engineering Centers Program of the National Science Foundation [DMR 1121053]
  3. China Scholarship Council

向作者/读者索取更多资源

Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4-dihydroxyphenylalanine (Dopa) (similar to 30 mol %) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using the surface forces apparatus, we show that on mica surfaces Mefp-5 achieves an adhesion energy approaching E-ad = similar to-14 mJ/m(2). This exceeds the adhesion energy of another interfacial protein, Mefp-3, by a factor of 4-5 and is greater than the adhesion between highly oriented monolayers of biotin and streptavidin. The adhesion to mica is notable for its dependence on Dopa, which is most stable under reducing conditions and acidic pH. Mefp-5 also exhibits strong protein-protein interactions with itself as well as with Mefp-3 from M. edulis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据