4.7 Article

Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/36.917899

关键词

classification magnetometry; ordnance; probabilistic neural network (PNN); unexploded ordnance (UXO)

向作者/读者索取更多资源

The outputs from a physics-based modeler of magnetometry data have been successfully used with a probabilistic neural network (PNN) to discriminate unexploded ordnance (UXO) from ordnance-related scrap. Cross-validation predictions were performed on three data sets to determine which modeler parameters were most valuable for UXO classification. The best performing parameter combination consisted of the modeler outputs depth, size, and inclination. The cross-validation results also indicated that good prediction performance could be expected. Model outputs from one location at a site were used to train a PNN model, which could correctly discriminate UXO from scrap at a different location of the same site. In addition, data from one site, the former Buckley Field, Arapahoe County, CO, was used to predict targets detected at an entirely different training range, The Badlands Bombing Range, Bull's Eye 2 (BBR 2), Cuny Table, SD. Through careful selection of the probability threshold cutoff, the UXO detection rate obtained was 95% with a false alarm rate of only 37%. The ability to distinguish individual UXO types has been demonstrated with correct classifications between 71% and 95%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据