4.4 Article

Nonspecific Interactions Between Escherichia coli NikR and DNA Are Critical for Nickel-Activated DNA Binding

期刊

BIOCHEMISTRY
卷 51, 期 40, 页码 7873-7879

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi300510z

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada
  2. NSERC

向作者/读者索取更多资源

The Escherichia coli transcription factor NikR is responsible for nickel-mediated repression of the operon encoding the Nik uptake transporter. The crystal structure of Ni(II)-NikR bound to the nik operator sequence revealed that residues in the loop preceding helix alpha 3 in the metal-binding domain, which becomes structurally ordered upon stoichiometric nickel binding, interact with the DNA backbone. Here, we show that mutating both of these residues that make the nonspecific contacts, K64 and R65, abolishes DNA binding in 4 vitro and nickel-responsive transcriptional repression of the nik promoter in vivo. In contrast, mutation of Q118, which forms a bridge between R65 and a potassium site, does not impact the activities of NikR. These data support the model that the nonspecific interactions between the metal-binding domain of the protein and the DNA phosphodiester backbone are critical for the Ni(II)-responsive activity of E. coli NikR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据