4.4 Article

Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP

期刊

BIOCHEMISTRY
卷 51, 期 7, 页码 1532-1546

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi201595v

关键词

-

资金

  1. National Institutes of Health [CA 10951]

向作者/读者索取更多资源

The mitochondrial ATP synthase (F0F1) is one of the most abundant, important, and complex enzymes found in animals and humans. In earlier studies, we used the photosensitive phosphate analogue vanadate (V-i) to study the enzyme's mechanism in the transition state. Significantly, these studies showed that Mg2+ plays an important role in transition state formation during ATP synthesis. Additionally, in both MgADP.V-i-F-i and MgVi-F-i complexes, photoactivation of orthovanadate (V-i) induced cleavage at the third residue within the P-loop (GG (A) under bar GVGKT), i.e., beta A158, suggesting its proximity to the gamma-phosphate during transition state formation. However, despite our recent release of the F-1-ATPase structure containing V-i, the structural details regarding the role of Mg2+ have remained elusive. Therefore, in this study, we sought to improve our understanding of the essential role of Mg2+ during transition state formation. We utilized Protein Data Bank structural data representing different conformational intermediates of key steps in ATP synthesis to assemble a database of positional relationships between landmark residues of the catalytic site and the bound ligand. Applying novel bioinformatics methods, we combined the resulting interatomic spatial data with an animated model of the catalytic site to visualize the exact nature of the changes in these positional relationships during ATP synthesis. The results of these studies reported here show that the absence of Mg2+ results in migration of inorganic phosphate (P-i) from beta A158 to a more medial position in the P-loop binding pocket, thereby disrupting essential placement and orientation of the P-i needed to form the transition state structure and therefore MgATP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据