4.4 Article

Probing the Caveolin-1 P132L Mutant: Critical Insights into Its Oligomeric Behavior and Structure

期刊

BIOCHEMISTRY
卷 51, 期 18, 页码 3911-3918

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi3001853

关键词

-

资金

  1. NIH [RO1 GM093258-01A1]

向作者/读者索取更多资源

Caveolin-1 is the most important protein found in caveolae, which are cell surface invaginations of the plasma membrane that act as signaling platforms. A single point mutation in the transmembrane domain of caveolin-1 (proline 132 to leucine) has deleterious effects on caveolae formation in vivo and has been implicated in various disease states, particularly aggressive breast cancers. Using a combination of gel filtration chromatography and analytical ultracentrifugation, we found that a fully functional construct of caveolin-1 (Cav1(62-178)) was a monomer in dodecylphosphocholine micelles. In contrast, the P132L mutant of Cav1(62-178) was dimeric. To explore the dimerization of the P132L mutant further, various truncated constructs (Cav1(82-178), Cav1(96-178), Cav1(62-136), Cav1(82-136), Cav1(96-136)) were prepared which revealed that oligomerization occurs in the transmembrane domain (residues 96-136) of caveolin-1. To characterize the mutant structurally, solution-state NMR experiments in lyso-myristoylphosphatidylglycerol were undertaken of the Cav1(96-136) P132L mutant. Chemical shift analysis revealed that, compared to the wild-type, helix 2 in the transmembrane domain was lengthened by four residues (wild-type, residues 111-129; mutant, residues 111-133), which corresponds to an extra turn in helix 2 of the mutant. Lastly, point mutations at position 132 of Cav1(62-178) (P132A, P132I, P132V, P132G, P132W, P132F) revealed that no other hydrophobic amino acid can preserve the monomeric state of Cav1(62-178), which indicates that proline 132 is critical in supporting proper caveolin-1 behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据