4.4 Article

Role of the Helical Structure of the N-Terminal Region of Plasmodium falciparum Merozoite Surface Protein 2 in Fibril Formation and Membrane Interaction

期刊

BIOCHEMISTRY
卷 51, 期 7, 页码 1380-1387

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi201880s

关键词

-

资金

  1. Anhui Provincial Natural Science Foundation [090413079]
  2. Scientific Research Foundation for Returned Scholars, Ministry of Education of China
  3. National Health and Medical Research Council (NHMRC) of Australia [637368]
  4. NHMRC

向作者/读者索取更多资源

Merozoite surface protein 2 (MSP2), an abundant glycosylphosphatidylinositol-anchored protein on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically disordered and forms amyloid-like fibrils in solution under physiological conditions. The 25 N-terminal residues (MSP2(1-25)) play an important role in both fibril formation and membrane binding of the full-length protein. In this study, the fibril formation and solution structure of MSP2(1-25) in the membrane mimetic solvents sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), and trifluoroethanol (TFE) have been investigated by transmission electronic microscopy, turbidity, thioflavin T fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. Turbidity data showed that the aggregation of MSP2(1-25) was suppressed in the presence of membrane mimetic solvents. CD spectra indicated that helical structure in MSP2(1-25) was stabilized in SDS and DPC micelles and in high concentrations of TFE. The structure of MSP2(1-25) in 50% aqueous TFE, determined using NMR, showed that the peptide formed an amphipathic helix encompassing residues 10-24. Low concentrations of TFE favored partially folded helical conformations, as demonstrated by CD and NMR, and promoted MSP2(1-25) fibril formation. Our data suggest that partially folded helical conformations of the N-terminal region of MSP2 are on the pathway to amyloid fibril formation, while higher degrees of helical structure stabilized by high concentrations of TFE or membrane mimetics suppress self-association and thus inhibit fibril formation. The roles of the induced helical conformations in membrane interactions are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据