4.7 Article

K+ channels and the microglial respiratory burst

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 280, 期 4, 页码 C796-C806

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.2001.280.4.C796

关键词

calcium-activated potassium channels; small-conductance K+ channels; Kv1.3; reactive oxygen intermediates; microglial activation

向作者/读者索取更多资源

Microglial activation following central nervous system damage or disease often culminates in a respiratory burst that is necessary for antimicrobial function, but, paradoxically, can damage bystander cells. We show that several K+ channels are expressed and play a role in the respiratory burst of cultured rat microglia. Three pharmacologically separable K+ currents had properties of Kv1.3 and the Ca2+/calmodulin-gated channels, SK2, SK3, and SK4. mRNA was detected for Kv1.3, Kv1.5, SK2, and/or SK3, and SK4. Protein was detected for Kv1.3, Kv1.5, and SK3 (selective SK2 and SK4 antibodies not available). No Kv1.5-like current was detected, and confocal immunofluorescence showed the protein to be subcellular, in contrast to the robust membrane localization of Kv1.3. To determine whether any of these channels play a role in microglial activation, a respiratory burst was stimulated with phorbol 12-myristate 13-acetate and measured using a single cell, fluorescence-based dihydrorhodamine 123 assay. The respiratory burst was markedly inhibited by blockers of SK2 (apamin) and SK4 channels (clotrimazole and charybdotoxin), and to a lesser extent, by the potent Kv1.3 blocker agitoxin-2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据