4.6 Article

Theory of decoherence-free fault-tolerant universal quantum computation

期刊

PHYSICAL REVIEW A
卷 63, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.63.042307

关键词

-

向作者/读者索取更多资源

Universal quantum computation on decoherence-free subspaces and subsystems (DFSs) is examined with particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the existence of decoherence-free (noiseless) subsystems in the Markovian regime is derived here for the first time. A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective decoherence mechanisms arising from permutation symmetries of the system-bath coupling are examined within this framework. It is shown that in both cases universal quantum computation which always preserves the DFS (natural fault-tolerant computation) can be performed using only two-body interactions. This is in marked contrast to standard error correcting codes, where all known constructions using one- or two-body interactions must leave the code space during the on-time of the fault-tolerant gates. A further consequence of our universality construction is that a single exchange Hamiltonian can be used to perform universal quantum computation on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is naturally present in many quantum systems, is thus asymptotically universal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据