4.6 Article

Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 16, 期 4, 页码 722-730

出版社

AMER SOC BONE & MINERAL RES
DOI: 10.1359/jbmr.2001.16.4.722

关键词

osteoclast; mechanical stretching; bone resorption; tartrate resistant acid phosphatase; cathepsin K; stretch-activated cation channel

向作者/读者索取更多资源

Adaptive modeling and remodeling are controlled by the activities of osteoblasts and osteoclasts, which are capable of sensing their mechanical environments and regulating deposition or resorption of bone matrix. The effects of mechanical stimuli on isolated osteoclasts have been scarcely examined because it has proven to be difficult to prepare a number of pure osteoclasts and to cultivate them on mineralized substratum during mechanical stimulation, Recently, we developed an apparatus for applying mechanical stretching to the ivory slice/plastic plate component on which cells could be cultured. The loading frequency, strain rate, and generated strain over an ivory surface could be controlled by a personal computer. Using this apparatus, we examined the role of mechanical stretching on the bone-resorbing activity of the osteoclasts. Mature and highly enriched osteoclasts mere cultured for 2, 12, and 24 h on the ivory/plate component while being subjected to intermittent tensile strain. The stretched osteoclasts showed enhanced messenger RNA (mRNA) expression levels of osteoclast marker enzymes, tartrate-resistant acid phosphatase (TRAP), and cathepsin K and increases of resorbed-pit formation, suggesting that the mechanical stretching up-regulated the bone-resorbing activity of the osteoclasts, A stretch-activated cation (SA-cat) channel blocker significantly inhibited the increases of the mRNA level and pit formation after 24 h of stretching. This study suggested the possibility that the mature osteoclasts responded to mechanical stretching through a mechanism involving a SA-cat channel in the absence of mesenchymal cells and, as a result, up-regulated their bone-resorbing activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据