4.5 Article

H2O2-induced cell death in human glioma cells:: Role of lipid peroxidation and PARP activation

期刊

NEUROCHEMICAL RESEARCH
卷 26, 期 4, 页码 337-343

出版社

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1010993428770

关键词

H2O2 cytotoxicity; lipid peroxidation; poly(ADP-ribose) polymerase activation; antioxidants; cultured human glioma cells

向作者/读者索取更多资源

Reactive oxygen species (ROS) have been implicated in the pathogenesis of a number of neurodegenerative disorders. However, the underlying mechanism of ROS-induced cell injury remains to be defined. This study was undertaken to examine the role of lipid peroxidation and poly (ADP-ribose),polymerase (PARP) activation in H2O2-induced cell death in A172 cells, a human glioma cell line, H2O2 induced a dose- and time-dependent cell death. The cell death was prevented by thiols (dithiothreitol and glutathione), iron chelators (deferoxamine and phenanthroline), H2O2 scavengers (catalase and pyruvate), and a hydroxyl radical scavenger (dimethylthiourea). Antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD) and Trolox had no effect on the H2O2-induced cell death. Lipid peroxidation did not increase in human glioma cells exposed to H2O2. The PARP inhibitor 3-aminobenzamide prevented the cell death induced by H2O2. The PARP activity was increased by H2O2 and the H2O2 effect was prevented by 3-aminobenzamide, dithiothreitol, and phenanthroline. The ATP depletion induced by H2O2 was prevented by catalase, dithiothreitol, phenanthroline, and 3-aminobenzamide, but not by DPPD. These results indicate that the H2O2-induced cell death is mediated by PARP activation but not by lipid peroxidation in human glioma cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据