4.5 Article

Simulated limnological effects of the Shasta Lake temperature control device

期刊

ENVIRONMENTAL MANAGEMENT
卷 27, 期 4, 页码 609-626

出版社

SPRINGER-VERLAG
DOI: 10.1007/s0026702324

关键词

Shasta Lake; temperature control device; selective withdrawal; reservoir water quality simulation; CE-QUAL-W2; design of experiment

向作者/读者索取更多资源

We estimated the effects of a temperature control device (TCD) on a suite of thermodynamic and limnological attributes for a large storage reservoir. Shasta Lake, in northern California. Shasta Dam was constructed in 1945 with a fixed-elevation penstock. The TCD was installed in 1997 to improve downstream temperatures for endangered salmonids by releasing epilimnetic waters in the winter/spring and hypolimnetic waters in the summer/fall. We calibrated a two-dimensional hydrodynamic reservoir water quality model. CEQUAL-W2, and applied a structured design-of-experiment simulation procedure to predict the principal limnological effects of the TCD under a variety of environmental scenarios. Calibration goodness-of-fit ranged from good to poor depending on the constituent simulated, with an R-2 of 0.9 for water temperature but 0.3 for phytoplankton. Although the chemical and thermal characteristics of the discharge changed markedly, the reservoir's characteristics remained relatively unchanged. Simulations showed the TCD causing an earlier onset and shorter duration of summer stratification, but no dramatic affect on Shasta's nutrient composition. Peak in-reservoir phytoplankton production may begin earlier and be stronger in the fall with the TCD, while outfall phytoplankton concentrations may be much greater in the spring. Many model predictions differed from our a priori expectations that had been shaped by an intensive, but limited-duration, data collection effort. Hydrologic and meteorological variables, most notably reservoir carryover storage at the beginning of the calendar year, influenced model predictions much more strongly than the TCD. Model results indicate that greater control over reservoir limnology and release quality may be gained by carefully managing reservoir volume through the year than with the TCD alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据