4.4 Article

Multiconformation Continuum Electrostatics Analysis of the Effects of a Buried Asp Introduced near Heme a in Rhodobacter sphaeroides Cytochrome c Oxidase

期刊

BIOCHEMISTRY
卷 49, 期 37, 页码 8043-8052

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi100663u

关键词

-

资金

  1. National Institutes of Health (NIH) [1R01GM084028-01A2, 5G12 RR03060]

向作者/读者索取更多资源

Cytochrome c oxidase (CcO) reduces O-2 to water via a series of proton-coupled electron transfers, generating a transmembrane electrochemical gradient. Coupling electron and proton transfer requires changing the pK(a) values of buried residues at each stage in the reaction cycle. Heme a is a key cofactor in the CcO electron transfer chain. Mutation of Ser44 to Asp has been reported [Mills, D. A., et al. (2008) Biochemistry 47, 11499-11509], changing the hydrogen bond acceptor from His 102, the heme a axial ligand in Rhodobactor sphaeroides CcO. This adds an acidic residue to the CcO interior. The electrochemical behavior of heme a in wild-type and S44D CcO is compared using the continuum electrostatics program MCCE. The introduced, deeply buried Asp remains ionized at physiological pH only when the nearby heme is oxidized. Heme a reduction is now calculated to be strongly coupled to Asp proton binding, while with Ser44, it is weakly coupled to small protonation shifts at multiple sites, increasing the pH dependence in the mutant. At pH 7, the partially ionized Asp 44 is calculated to lower the heme redox potential by 50 mV as expected given the thermodynamics of coupled electron and proton transfers. This highlights an curious finding in the experimental results where a low Asp pK(a) is found together with a stabilized reduced heme. The stabilization of a heme oxidation in a model complex by a hydrogen bond to the axial His ligand calculated with continuum electrostatics and with density functional theory were in good agreement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据