4.4 Article

A Genetic Analysis of Nitrosative Stress

期刊

BIOCHEMISTRY
卷 48, 期 4, 页码 792-799

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi801813n

关键词

-

向作者/读者索取更多资源

Nitrosative stress is induced by pathophysiological levels of nitric oxide (NO) and S-nitrosothiols (e.g., S-nitrosoglutathione, GSNO) and arises, at least in significant part, from the nitrosylation of critical protein Cys thiols (S-nitrosylation) and metallocofactors. However, the mechanisms by which NO and GSNO mediate nitrosative stress are not well understood. Using yeast Saccharomyces cerevisiae strains lacking NO- and/or GSNO-consuming enzymes (flavohemoglobin and GSNO reductase, respectively), we measured the individual and combined effects of NO and GSNO on both cell growth and the formation of protein-bound NO species. Our results suggest an intracellular equilibrium between NO and GSNO, dependent in part on cell-catalyzed release of NO from GSNO (i.e., SNO-lyase activity). However, whereas NO induces multiple types of protein-based modifications, levels of which correlate with inhibition of cell growth, GSNO mainly affects protein S-nitrosylation, and the relationship between S-nitrosylation and nitrosative stress is more complex. These data support the idea of multiple classes of protein-SNO, likely reflected in divergent routes of synthesis and degradation. Indeed, a significant fraction of protein S-nitrosylation by NO occurs in the absence of 0,, which is commonly assumed to drive this reaction but instead is apparently dependent in substantial part upon protein-bound transition metals. Additionally, our findings suggest that nitrosative stress is mediated principally via the S-nitrosylation of a subset of protein targets, which include protein SNOs that are stable to cellular glutathione (and thus are not metabolized by GSNO reductase). Collectively, these results provide new evidence for the mechanisms through which NO and GSNO mediate nitrosative stress as well as the cellular pathways of protein S-nitrosylation and denitrosylation involving metalloproteins, SNO lyase(s) and GSNO reductase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据