4.4 Article

Designer DNA Nanoarchitectures

期刊

BIOCHEMISTRY
卷 48, 期 8, 页码 1663-1674

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi802324w

关键词

-

资金

  1. National Science Foundation (NSF)
  2. Army Research Office (ARO)
  3. Technology and Research Initiative Fund from Arizona State University
  4. NSF
  5. ARO
  6. Air Force Office of Scientific Research
  7. Office of Naval Research
  8. National Institutes of Health
  9. Directorate For Engineering
  10. Div Of Chem, Bioeng, Env, & Transp Sys [0827681] Funding Source: National Science Foundation

向作者/读者索取更多资源

Naturally existing biological systems, from the simplest unicellular diatom to the most sophisticated organ such as the human brain, are functional self-assembled architectures. Scientists have long been dreaming about building artificial nanostructures that can mimic such elegance in nature. Structural DNA nanotechnology, which uses DNA as a blueprint and building material to organize matter with nanometer precision, represents an appealing solution to this challenge. On the basis of the knowledge of helical DNA structure and Watson-Crick base pairing rules, scientists have constructed a number of DNA nanoarchitectures with a large variety of geometries, topologies, and periodicities with considerably high yields. Modified by functional groups, those DNA nanostructures can serve as scaffolds to control the positioning of other molecular species, which opens opportunities to study intermolecular synergies, such as protein-protein interactions, as well as to build artificial multicomponent nanomachines. In this review, we summarize the principle of DNA self-assembly, describe the exciting progress of structural DNA nanotechnology in recent years, and discuss the current frontier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据