4.4 Article

Enzyme Activity of Phosphatase of Regenerating Liver Is Controlled by the Redox Environment and Its C-Terminal Residues

期刊

BIOCHEMISTRY
卷 48, 期 20, 页码 4262-4272

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi900241k

关键词

-

资金

  1. National Center for Research Resources [P20 RR-17708]
  2. Kansas University Center for Research
  3. Amgen
  4. Edith and Eleta Ernst Cancer Research Fellowship
  5. KCALSI

向作者/读者索取更多资源

Phosphatase of regenerating liver-1 (PRL-1) belongs to a unique subfamily of protein tyrosine phosphatases (PTPases) associated with oncogenic and metastatic phenotypes. While considerable evidence supports a role for PRL-1 in promoting proliferation, the biological regulators and effectors of PRL-1 activity remain unknown. PRL-1 activity is inhibited by disulfide bond formation at the active site in vitro, suggesting PRL-1 may be susceptible to redox regulation in vivo. Because PRL-1 has been observed to localize to several different subcellular locations and cellular redox conditions vary with tissue type, age, stage of cell cycle, and subcellular location, we determined the reduction potential of the active site disulfide bond that controls phosphatase activity to improve our understanding of the function of PRL-1 in various cellular environments. We used high-resolution solution NMR spectroscopy to measure the potential and found it to be -364.3 +/- 1.5 mV. Because normal cellular environments range from -170 to -320 mV, we concluded that nascent PRL-1 would be primarily oxidized inside cells. Our studies show that a significant conformational change accompanies activation, suggesting a post-translational modification may alter the reduction potential, conferring activity. We further demonstrate that alteration of the C-terminus renders the protein reduced and active in vitro, implying the C-terminus is an important regulator of PRL-1 function. These data provide a basis for understanding how subcellular localization regulates the activity of PRL-1 and, with further investigation, may help reveal how PRL-1 promotes unique outcomes in different cellular systems, including proliferation in both normal and diseased states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据