4.4 Article

The SH2 Domains of Inositol Polyphosphate 5-Phosphatases SHIP1 and SHIP2 Have Similar Ligand Specificity but Different Binding Kinetics

期刊

BIOCHEMISTRY
卷 48, 期 46, 页码 11075-11083

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi9012462

关键词

-

资金

  1. National Institutes of Health [GM062820]

向作者/读者索取更多资源

SH2 domain-containing inositol 5-phosphatases 1 (SHIP1) and 2 (SHIP2) are structurally similar proteins that catalyze the degradation of lipid secondary messenger phosphatidylinositol 3,4,5-triphosphate to produce phosphatidylinositol 3,4-diphosphate. Despite their high sequence identity (51%), SHIP1 and SHIN share little overlap in their in vivo functions. In this work, the sequence specificity of the SHIN SH2 domain was systematically defined through the screening of a combinatorial pY peptide library. Comparison of its specificity profile with that of the SHIP1 SH2 domain showed that the two SH2 domains have similar specificities, both recognizing pY peptides of the consensus sequence pY[S/Y][L/Y/M][L/M/I/V], although there are also subtle differences such as the tolerance of ail arginine at the pY + 1 position by the SHIP2 but not SHIP1 SH2 domain. Surface plasmon resonance analysis of their interaction with various pY peptides suggested that the two domains have similar binding affinities but dramatically different binding kinetics, with the SHIP1 SH2 domain having fast association and dissociation rates while the SHIP2 domain showing apparent slow-binding behavior. Site-directed mutagenesis and kinetic Studies indicated that the SHIN SH2 domain exists as a mixture of two conformational isomers. The major, inactive isomer apparently contains two cis peptidyl-prolyl bonds at positions 88 and 105, whereas the minor, active isomer has both proline residues in their trans configuration. Cis-trans isomerization of the peptidyl-prolyl bonds may provide a potential mechanism for regulating the interaction between SHIP2 and pY proteins. These data suggest that a combination of tissue distribution, specificity, and kinetic differences is likely responsible for their in vivo functional differences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据