4.4 Article

Quantitative Analysis of RNA Solvent Accessibility by N-Silylation of Guanosine

期刊

BIOCHEMISTRY
卷 48, 期 10, 页码 2109-2114

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi801939g

关键词

-

资金

  1. National Science Foundation [MCB-0416941]

向作者/读者索取更多资源

An important unmet experimental objective is to analyze local RNA structure in a way that is strictly governed by solvent accessibility. Essentially all chemical probes currently used to evaluate RNA (and DNA) structure via formation of stable covalent adducts employ carbon-based electrophiles, which undergo nucleophilic attack from limited spatial orientations and via highly polar transition states. Reaction by these classical electrophiles is therefore gated by both solvent accessibility and additional electrostatic factors. In contrast, silicon electrophiles react via their d-orbitals and consequently can undergo nucleophilic attack from many spatial orientations. In this work, we explore the use of silanes to react indiscriminately with RNA such that the primary factor governing reactivity is solvent accessibility. We show that N,N-(dimethylamino)dimethylchlorosilane (DMAS-Cl) reacts at the guanosine N2 position to yield a near-perfect measure (r >= 0.82) of solvent accessibility in an RNA with a complex tertiary structure. This silane-based chemistry represents a direct and quantitative approach for probing solvent accessibility at the base pairing face of guanosine in RNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据