4.4 Article

Elucidation of the Molecular Basis of Cholecystokinin Peptide Docking to Its Receptor Using Site-Specific Intrinsic Photoaffinity Labeling and Molecular Modeling

期刊

BIOCHEMISTRY
卷 48, 期 23, 页码 5303-5312

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi9004705

关键词

-

资金

  1. National Institutes of Health [DK32878]
  2. Fiterman Foundation
  3. Mayo Clinic

向作者/读者索取更多资源

G protein-coupled receptors represent the largest family of receptors and the major target of current drug development efforts. Understanding of the mechanisms of ligand binding and activation of these receptors remains limited, despite recent advances in structural determination of family members. This work focuses oil the use of photoaffinity labeling and molecular modeling to elucidate the structural basis of binding a natural peptide ligand to a family A G protein-coupled receptor, the type I cholecystokinin receptor. Two photolabile cholecystokinin analogues were developed and characterized as representing high-affinity, fully biologically active probes with sites of covalent attachment at positions 28 and 31. The sites of receptor labeling were identified by purification, proteolytic peptide mapping, and radiochemical sequencing of labeled wild-type and mutant cholecystokinin receptors. The position 28 probe labeled second extracellular loop residue Phe(107). Along with five additional spatial approximation constraints coming from previous photoaffinity labeling studies and 12 distance restraints from fluorescence resonance energy transfer studies, these were built into two homology models of the cholecystokinin receptor, based on the recent crystal structures of the beta 2-adrenergic receptor and A2a-adenosine receptor. The resultant agonist ligand-occupied receptor models fully accommodate all existing experimental data and represent the best refined models of a peptide hormone receptor in this important family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据