4.4 Article

Heme Iron Nitrosyl Complex of MauG Reveals an Efficient Redox Equilibrium between Hemes with Only One Heme Exclusively Binding Exogenous Ligands

期刊

BIOCHEMISTRY
卷 48, 期 49, 页码 11603-11605

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi9017544

关键词

-

资金

  1. NSF [MCB0843537]
  2. Georgia Cancer Coalition Distinguished Scientist Program
  3. NIH [R37GM041574]
  4. Molecular Basis of Disease (MBD) program of Georgia State University
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [0843537] Funding Source: National Science Foundation

向作者/读者索取更多资源

MauG is a diheme enzyme that oxidizes two protein-bound tryptophan residues to generate a catalytic tryptophan tryptophylquinone cofactor within methylamine dehydrogenase. Upon the two-electron oxidation of bis-ferric MauG, the two c-type hemes exist as a spin-uncoupled bis-Fe(IV) species with only one binding oxygen, which is chemically equivalent to a single ferryl heme plus a pi porphyrin cation radical (Li, X. et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 8597-8600). The EPR spectrum of the nitrosyl complex of fully reduced MauG shows a single six-coordinate Fe(II)-NO species, which is characteristic of a histidine-ligated Fe(II)-NO moiety in the heme environment. Exposure of partially reduced MauG to NO reveals a redox equilibrium with facile electron transfer between hemes but with only one binding nitric oxide. Thus, the second heme is able to stabilize all three redox states of iron (Fe(II), Fe(III), and Fe(IV)) in a six-coordinate protein-bound heme without binding exogenous ligands. This is unprecedented behavior for a protein-bound heme for which each of these redox states is relevant to the overall catalytic mechanism. The results also illustrate the electronic communication between the two iron centers, which function as a diheme unit rather than independent heme cofactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据