4.4 Article

Role of the HIV gp120 conserved domain 5 in processing and viral entry

期刊

BIOCHEMISTRY
卷 47, 期 30, 页码 7788-7795

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi800227z

关键词

-

资金

  1. NIAID NIH HHS [R01 AI47674] Funding Source: Medline

向作者/读者索取更多资源

The importance of the HIV gp120 conserved domain 5 (gp120-C5) to envelope function has been examined by alanine scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry and envelope expression, processing, and incorporation, as well as gp120 association with gp41. With respect to the wild-type gp120, mutational effects on viral entry fall into three classes: (1) functional (V489A, E492A, P493A, T499A, K500A, K502A, R503A, R504A, V505A, and V506A; (2) nonfunctional (I491A, L494A, V496A, and P498A); (3) enhanced (K490A, G495A, and Q507A). The nonfunctionality of the mutants is attributed to a combination of deleterious effects on processing, gp120-gp41 association, and membrane fusion. In the case of the nonfunctional mutant P498A, the introduction of the SOS mutation (A501C/T601C) results in substantially increased envelope processing and a gain of function. The effects of the mutants are interpreted with respect to the structures of gp41 and gp120. The extent of sensitivity of gp120-C5 to alanine substitutions underscores the importance of this domain to envelope function and suggests that gp120-C5 is an attractive and novel target for future drug discovery efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据