4.5 Article

Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth

期刊

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
卷 26, 期 17, 页码 1327-1342

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09205063.2015.1090181

关键词

silk; biomaterials; neural; tissue engineering; topography

资金

  1. University of Texas at Austin
  2. University of Florida

向作者/读者索取更多资源

Instructive biomaterials capable of controlling the behaviour of the cells are particularly interesting scaffolds for tissue engineering and regenerative medicine. Novel biomaterials are particularly important in societies with rapidly aging populations, where demand for organ/tissue donations is greater than their supply. Herein we describe the preparation of electrically conductive silk film-based nerve tissue scaffolds that are manufactured using all aqueous processing. Aqueous solutions of Bombyx mori silk were cast on flexible polydimethylsiloxane substrates with micrometer-scale grooves on their surfaces, allowed to dry, and annealed to impart -sheets to the silk which assures that the materials are stable for further processing in water. The silk films were rendered conductive by generating an interpenetrating network of polypyrrole and polystyrenesulfonate in the silk matrix. Films were incubated in an aqueous solution of pyrrole (monomer), polystyrenesulfonate (dopant) and iron chloride (initiator), after which they were thoroughly washed to remove low molecular weight components (monomers, initiators, and oligomers) and dried, yielding conductive films with sheet resistances of 124 +/- 23ksquare(-1). The micrometer-scale grooves that are present on the surface of the films are analogous to the natural topography in the extracellular matrix of various tissues (bone, muscle, nerve, skin) to which cells respond. Dorsal root ganglions (DRG) adhere to the films and the grooves in the surface of the films instruct the aligned growth of processes extending from the DRG. Such materials potentially enable the electrical stimulation (ES) of cells cultured on them, and future in vitro studies will focus on understanding the interplay between electrical and topographical cues on the behaviour of cells cultured on them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据