4.4 Article

Changes in Actin Structural Transitions Associated with Oxidative Inhibition of Muscle Contraction

期刊

BIOCHEMISTRY
卷 47, 期 45, 页码 11811-11817

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi801080x

关键词

-

资金

  1. NIH [AR32961, AG26160]
  2. University of Minnesota Biomedical Genomics Center

向作者/读者索取更多资源

We have used transient phosphorescence anisotropy (TPA) to detect changes in actin structural dynamics associated with oxidative inhibition of muscle contraction. Contractility of skinned rabbit psoas muscle fibers was inhibited by treatment with 50 mM H2O2, which induced oxidative modifications in the myosin head and in actin, as previously reported. Using proteins purified from oxidized and unoxidized muscle, we used TPA to measure the effects of weakly (+ATP) and strongly (no ATP) bound myosin heads (S1) on the microsecond dynamics of actin labeled at Cys374 with erythrosine iodoacetamide. Oxidative modification of S1 had no effect on actin dynamics in the absence of ATP (strong binding complex), but restricted the dynamics in the presence of ATP (weakly bound complex). In contrast, oxidative modification of actin did not have a significant effect on the weak-to-strong transitions. Thus, we concluded that (1) the effects of oxidation on the dynamics of actin in the actomyosin complex are predominantly determined by oxidation-induced changes in S1, and (2) changes in weak-to-strong structural transitions in actin and myosin are coupled to each other and are associated with oxidative inhibition of muscle contractility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据