4.4 Article

Spin Trapping Investigation of Peroxide- and Isoniazid-Induced Radicals in Mycobacterium tuberculosis Catalase-Peroxidase

期刊

BIOCHEMISTRY
卷 47, 期 43, 页码 11377-11385

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi800952b

关键词

-

资金

  1. National Institutes of Health
  2. National Institute of Enviromnental Health Sciences
  3. NIH [AI-43582, AI-060014]

向作者/读者索取更多资源

A new approach, the immuno-spin trapping assay, used a novel rabbit polyclonal anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antiserum to detect protein radical-derived DMPO nitrone adducts in the hemoprotein Mycobacterium tuberculosis catalase-peroxidase (KatG). This work demonstrates that the formation of protein nitrone adducts is dependent on the concentrations of tert-BuOOH and DMPO as shown by Western blotting and an enzyme-linked immunosorbent assay (ELISA). We have also detected protein-protein cross-links formed during turnover of Mtb KatG driven by tert-butyl peroxide (tert-BuOOH) or enzymatic generation of hydrogen peroxide. DMPO inhibits this dimerization due to its ability to trap the amino acid radicals responsible for the cross-linkage. Chemical modifications by tyrosine and tryptophan blockage suggest that tyrosine residues are one site of formation of the dimers. The presence of the tuberculosis drug isoniazid (INH) also prevented cross-linking as a result of its competition for the protein radical. Protein-DMPO nitrone adducts were also generated by a continuous flux of hydrogen peroxide. These findings demonstrated that the protein-based radicals were formed not only during Mtb KatG turnover with alkyl peroxides but also in the presence of hydrogen peroxide. Furthermore, the formation of protein-DMPO nitrone adducts was accelerated in the presence of isoniazid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据