4.4 Article

The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state

期刊

BIOCHEMISTRY
卷 47, 期 36, 页码 9565-9573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi8006862

关键词

-

资金

  1. NIH [GM70941, AG019391, AG025440, P41 GM66354]
  2. New York State Office of Science, Technology
  3. Keck Foundation, New York State

向作者/读者索取更多资源

There is considerable interest in the properties of the unfolded states of proteins, particularly unfolded states which can be populated in the absence of high concentrations of denaturants. Interest in the unfolded state ensemble reflects the fact that it is the starting point for protein folding as well as the reference state for protein stability studies and can be the starting state for pathological aggregation. The unfolded state of the C-terminal domain (residues 58-149) of the ribosomal protein L9 (CTL9) can be populated in the absence of denaturant at low pH. CTL9 is a 92-residue globular alpha, beta protein. The low-pH unfolded state contains more secondary structure than the low-pH urea unfolded state, but it is not a molten globule. Backbone (H-1, C-13, and N-15) NMR assignments as well as side chain C-13 beta and H-1 beta assignments and N-15 R-2 values were obtained for the pH 2.0 unfolded form of CTL9 and for the urea unfolded state at pH 2.5. Analysis of the deviations of the chemical shifts from random coil values indicates that residues that comprise the two helices in the native state show a clear preference for adopting helical phi and psi angles in the pH 2.0 unfolded state. There is a less pronounced but nevertheless clear tendency for residues 107-124 to preferentially populate helical p and V) values in the unfolded state. The urea unfolded state has no detectable tendency to populate any type of secondary structure even though it is as compact as the pH 2.0 unfolded state. Comparison of the two unfolded forms of CTL9 provides direct experimental evidence that states which differ significantly in their secondary structure can have identical hydrodynamic properties. This in turn demonstrates that global parameters such as Rh or R. are very poor indicators of random coil behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据