4.2 Article

Engineering neoglycoproteins with multiple O-glycans using repetitive pentapeptide glycosylation units

期刊

GLYCOCONJUGATE JOURNAL
卷 18, 期 4, 页码 291-299

出版社

SPRINGER
DOI: 10.1023/A:1013608930759

关键词

O-glycosylation; multiple; fibroblast growth factor; neoglycoprotein

向作者/读者索取更多资源

Controlled protein remodeling with O-linked glycans has been limited by our incomplete understanding of the process of glycosylation. Here we describe a secretable fibroblast growth factor (FGF) with multiple mucin-type O-glycans produced by introducing a minimum pentapeptide glycosylation unit in a decarepeat format at its N- or C-terminus. Expressed in Chinese hamster ovary cells, chemical and biochemical analyses of the resultant proteins (Nm10-FGF and Cm10-FGF, respectively) demonstrated that all O-glycosylation units were glycosylated and the dominant structure was sialylated Gal[beta1-3]GalNAc. This indicates that minimum O-glycosylation unit in multirepeat format serves as a remarkably efficient acceptor in CHO cells. The Nm10-FGF and Cm10-FGF proteins maintained the mitogenic activity to vascular endothelial cells. In addition, intact Cm10-FGF and its desialylated form interacted with several lectins in the same way as mucin-type glycoproteins. The intact Cm10-FGF with multiple sialylated O-glycans exhibited a longer lifetime in circulating blood, whereas the Cm10-FGF with desialylated O-glycans exhibited a shorter lifetime than the deglycosylated form of Cm10-FGF. Our approach would thus appear to be highly effective for engineering neoglycoproteins, the characteristics of which are determined by their multiple mucin-type O-glycans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据