4.6 Article

Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution

期刊

JOURNAL OF APPLIED PHYSICS
卷 89, 期 7, 页码 4142-4149

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1352684

关键词

-

向作者/读者索取更多资源

The mechanism of the UV photoenhanced wet etching of GaN is determined. The UV photoenhanced wet etching does not require an electrical contact to be made to the sample, and nitrides deposited on insulating substrates (such as sapphire) can be etched, unlike photoelectrochemical (PEC) wet etching. The present technique relies on adding an appropriate oxidizing agent, in this case, peroxydisulfate (S2O82-), to KOH solutions. In a similar mechanism to PEC wet etching, the regions of low defect density are preferentially etched, leaving regions of high electron recombination such as threading dislocations relatively intact. The threading dislocations may be physically broken off, either by stirring or by a postetch sonication of the sample in KOH solution. Smoothly etched surfaces can be obtained under the proper conditions. A noble metal mask acts in a catalytic manner, yielding etch rates approximately one order of magnitude greater than those observed using inert masks. The essential role of the free radicals, originating from the peroxydisulfate ion, in the etching reaction is confirmed. The etching reaction is more rapid for more heavily n-type doped samples, and insulating C-doped layers act as an etch stop layer. (C) 2001 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据