4.4 Article

Inhibition studies of soybean and human 15-lipoxygenases with long-chain alkenyl sulfate substrates

期刊

BIOCHEMISTRY
卷 40, 期 14, 页码 4391-4397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi002581a

关键词

-

资金

  1. NIGMS NIH HHS [GM56062-01] Funding Source: Medline

向作者/读者索取更多资源

Lipoxygenases are currently potential targets for therapies against asthma, artherosceloris, and cancer. Recently, inhibition studies on both soybean (SLO) and human lipoxygenase (15-HLO) revealed the presence of an allosteric site that binds both substrate, linoleic acid, and inhibitors; oleic acid (OA) and oleyl sulfate (OS). OS (K-D approximate to 0.6 muM) is a approximate to 30-fold more potent inhibitor than OA (K-D approximate to 20 muM) due to the increased ionic strength of the sulfate moiety. To further investigate the role of the sulfate moiety on lipoxygenase function, SLO and 15-HLO were assayed against several fatty sulfate substrates (linoleyl sulfate (LS), cis-11,14-eicosadienoyl sulfate, and arachidonyl sulfate). The results demonstrate that SLO catalyzes all three fatty sulfate substrates and is not inhibited, indicating a binding selectivity of LS for the catalytic site and OS for the allosteric site. The 15-HLO, however, manifests parabolic inhibition kinetics with increasing substrate concentration, and it is irreversibly inhibited by these fatty sulfate substrates at high concentrations. The inhibition can be stopped, however, by the addition of detergent to the fatty sulfate mixture prior to the addition of 15-HLO. These results, combined with the modeling of the kinetic data, indicate that the inhibition of 15-HLO is due to a substrate aggregate. These substrate aggregates, however, do not inhibit SLO and could present a novel mode of inhibition for 15-HLO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据