4.7 Article

An adaptive mesh algorithm for evolving surfaces: Simulations of drop breakup and coalescence

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 168, 期 2, 页码 445-463

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcph.2001.6713

关键词

-

向作者/读者索取更多资源

An algorithm is presented for the adaptive restructuring of meshes on evolving surfaces. The resolution of the relevant local length scale is maintained everywhere with prescribed accuracy through the minimization of an appropriate mesh energy function by a sequence of local restructuring operations. The resulting discretization depends on the instantaneous configuration of the surface but is insensitive to the deformation history. Application of the adaptive discretization algorithm is illustrated with three-dimensional boundary-integral simulations of deformable drops in Stokes flow. The results show that the algorithm can accurately resolve detailed features of deformed fluid interfaces, including slender filaments associated with drop breakup and dimpled regions associated with drop coalescence. Our algorithm should be useful in a variety of fields, including computational fluid dynamics, image processing, geographical information systems, and biomedical engineering problems. (C) 2001 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据