4.6 Article

A dynamical model of Jupiter's auroral electrojet

期刊

NEW JOURNAL OF PHYSICS
卷 3, 期 -, 页码 31-320

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/3/1/303

关键词

-

向作者/读者索取更多资源

A global simulation for the auroral electrojet on Jupiter is presented. The required sequence of models was computed using JIM (the Jovian Ionospheric Model), a time-dependent, three-dimensional model for the thermosphere and ionosphere of Jupiter, and an a priori model for the planet's ionospheric electric field. We describe the plasma dynamics in the model by considering ion and electron motions at pressure levels less than 2 mu bar, lying above Jupiter's dynamo region, and including the region of maximum energy deposition by auroral particles. By considering the motions of the neutral species being `dragged' by the electrojet, we quantify the electrodynamic coupling between the neutral thermosphere and the auroral ionosphere. Two distinct altitude regions evolve in the model simulations, distinguished by different thermospheric flow patterns. Higher-altitude regions are subject to gas dynamic flow, while lower-altitude regions are strongly influenced by electrodynamic flow, associated with the transfer of momentum from the electrojet to the neutral gas. The electrojet models provide a basis for physical interpretation of current observational detections of ion motions in the Jovian auroral regions; as well as a means of optimizing future observations, in order to make similar detections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据